- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Bo, Luyu (2)
-
Cai, Bowen (2)
-
Li, Jiali (2)
-
Li, Teng (2)
-
Liu, Hongye (2)
-
Moomaw, Andrew (2)
-
Tian, Zhenhua (2)
-
Du, Yingshan (1)
-
Wang, Zhide (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Ultrasonics structural health monitoring (SHM) is widely recognized as an effective technique that enables early damage detection in large-scale structures and helps prevent potential catastrophic failures. Ultrasonic phased array technology has gained prominence in SHM due to its ability to inspect a large area with high spatial resolution. However, conventional systems often rely on physical wired sensor networks, limiting their deployment for hard-to-access regions. In this study, we present a wireless ultrasonic phased array system capable of dual-mode operation for both wall thickness measurement and structural damage detection. The system integrates wireless power transfer (WPT) modules and customized matching circuits, enabling efficient and flexible deployment. Proof-of-concept experiments demonstrate successful wall thickness evaluation and accurate defect localization in metallic structures using both delay-and-sum (DAS) and minimum variance (MV) imaging methods, with the MV algorithm offering improved imaging resolution. Future work will focus on advancing real-time monitoring through machine learning, enabling 3D imaging, and extending system applicability to anisotropic composite materials.more » « lessFree, publicly-accessible full text available September 8, 2026
-
Li, Jiali; Bo, Luyu; Li, Teng; Du, Yingshan; Cai, Bowen; Moomaw, Andrew; Liu, Hongye; Tian, Zhenhua (, American Society of Mechanical Engineers)Abstract The development of smart materials capable of dynamic shape morphing and rapid responsiveness has garnered significant interest for applications in soft robotics, tissue engineering, programmable materials, and adaptive structures. Hydrogels, owing to their intrinsic biocompatibility and flexibility, are promising candidates for such systems. Embedding micro-scale materials within hydrogel networks can further enhance their mechanical and functional properties. In this study, we present a hybrid fabrication platform that integrates surface acoustic wave (SAW)-based acoustofluidics with digital light processing (DLP) photopolymerization to fabricate smart hydrogel composites with programmable shape-memorable behavior. Using the SAW-induced acoustic potential field, silicon carbide (SiC) micro-whiskers are aligned within a custom UV-curable hydrogel ink and subsequently fixed via high-resolution DLP photopolymerization. This dual-control approach enables independent manipulation of micro-whisker orientation and structural geometry. Numerical simulations and Laser Doppler vibrometry-based validation were employed to characterize the acoustic field. To evaluate shape-memory behavior, the fabricated hydrogels were subjected to dehydration and rehydration cycles. The resulting shape transformations, driven by internal stress gradients within the aligned microparticle framework, enabled humidity-responsive actuation. This work establishes a novel strategy for constructing 4D-printed smart hydrogels, offering a versatile platform for the development of next-generation programmable materials and adaptive structures.more » « lessFree, publicly-accessible full text available September 8, 2026
An official website of the United States government
